First principles explanation of the positive Seebeck coefficient of lithium.

نویسندگان

  • Bin Xu
  • Matthieu J Verstraete
چکیده

Lithium is one of the simplest metals, with negative charge carriers and a close reproduction of free-electron dispersion. Experimentally, however, Li is one of a handful of elemental solids (along with Cu, Ag, and Au) where the sign of the Seebeck coefficient (S) is opposite to that of the carrier. This counterintuitive behavior still lacks a satisfactory interpretation. We calculate S fully from first principles, within the framework of Allen's formulation of Boltzmann transport theory. Here it is crucial to avoid the constant relaxation time approximation, which gives a sign for S which is necessarily that of the carriers. Our calculated S are in excellent agreement with experimental data, up to the melting point. In comparison with another alkali metal, Na, we demonstrate that within the simplest nontrivial model for the energy dependency of the electron lifetimes, the rapidly increasing density of states (DOS) across the Fermi energy is related to the sign of S in Li. The exceptional energy dependence of the DOS is beyond the free-electron model, as the dispersion is distorted by the Brillouin zone edge; this has a stronger effect in Li than other alkali metals. The electron lifetime dependency on energy is central, but the details of the electron-phonon interaction are found to be less important, contrary to what has been believed for several decades. Band engineering combined with the mechanism exposed here may open the door to new "ambipolar" thermoelectric materials, with a tunable sign for the thermopower even if either n- or p-type doping is impossible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seebeck coefficient measurements of lithium isotopes

Lithium, owing to its many advantages, is of immense interest to the fusion community for its use as plasma facing component (PFC) material. Various experiments are under progress in the Center for Plasma Material Interactions (CPMI) at the University of Illinois at Urbana Champaign (UIUC) aimed at understanding the plasma–lithium interactions. In one such experiment called Solid/Liquid Lithium...

متن کامل

Using First Principles Density Functional Theory Methods to Model the Seebeck Coefficient of Bulk Silicon

LIBRARIES The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereftcrprcatcd. Abstract: Thermoelectrics are gaining significant amounts of attention considering their relevance today in the areas of sustainable energy generation and energy efficiency. In this thesis...

متن کامل

6 M ay 2 00 9 Thermoelectricity of Molecular tunnel Junctions

A first-principles approach is presented for the thermoelectricity in molecular junctions formed by a single molecule contact. The study investigates the Seebeck coefficient considering the source-drain electrodes with distinct temperatures and chemical potentials in a three-terminal geometry junction. We compare the Seebeck coefficient in the amino-substituted and unsubstituted butanethiol jun...

متن کامل

First-principles study on the origin of large thermopower in hole-doped LaRhO(3) and CuRhO(2).

Based on first-principles calculations, we study the origin of the large thermopower in Ni-doped LaRhO(3) and Mg-doped CuRhO(2). We calculate the band structure and construct the maximally localized Wannier functions from which a tight binding Hamiltonian is obtained. The Seebeck coefficient is calculated within the Boltzmann's equation approach using this effective Hamiltonian. For LaRhO(3), w...

متن کامل

Thermoelectricity and disorder of FeCo/MgO/FeCo magnetic tunnel junctions

We compute the thermoelectric transport parameterized by the Seebeck coefficient and thermal/electric conductance of random-alloy FeCo/MgO/FeCo(001) magnetic tunnel junctions (MTJs) from first principles using a generalized Landauer-Büttiker formalism. The thermopower is found to be typically smaller than those of Fe/MgO/Fe(001) MTJs. The (magneto-)Seebeck effect is sensitive to the details of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 112 19  شماره 

صفحات  -

تاریخ انتشار 2014